MICROCHIP CoreFPU Core Floating Point Unit

Вовед
- The Core Floating Point Unit (CoreFPU) is designed for floating-point arithmetic and conversion operations, for single and double precision floating-point numbers. CoreFPU supports fixed-point to floating-point and floating-point to fixed-point conversions and floating-point addition, subtraction, and multiplication operations. The IEEE® Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point computation.
- Important: CoreFPU supports calculations with normalized numbers only, and only the Verilog language is supported; VHDL is not supported.
Резиме
The following table provides a summary of the CoreFPU characteristics.
Table 1. CoreFPU Characteristics
| Основна верзија | This document applies to CoreFPU v3.0. |
| Поддржани фамилии на уреди |
|
| Поддржан проток на алатки | Потребни се Libero® SoC v12.6 или понови изданија. |
| Лиценцирање | CoreFPU is not license locked. |
| Инструкции за инсталација | CoreFPU must be installed to the IP Catalog of Libero SoC automatically through the IP Catalog update function. Alternatively, CoreFPU could be manually downloaded from the catalog. Once the IP core is
installed, it is configured, generated and instantiated within SmartDesign for inclusion in the project. |
| Употреба и перформанси на уредот | A summary of utilization and performance information for CoreFPU is listed in Device Resource Utilization and Performance. |
CoreFPU Change Log Information
Овој дел дава сеопфатен прегледview of the newly incorporated features, beginning with the most recent release. For more information about the problems resolved, see the Resolved Issues section.
| Верзија | Што има ново |
| v3.0 | Implemented additional output flags to enhance the accuracy of the IP |
| v2.1 | Added the double precision feature |
| v2.0 | Updated the timing waveforms |
| v1.0 | First production release of CoreFPU |
1. Карактеристики
CoreFPU has the following key features:
- Supports Single and Double Precision Floating Numbers as per IEEE-754 Standard
- Supports Conversions as listed:
- Fixed-point to Floating-point conversion
- Floating-point to Fixed-point conversion
- Supports Arithmetic Operations as listed:
- Floating-point addition
- Floating-point subtraction
- Floating-point multiplication
- Provides the Rounding Scheme (Round to nearest even) for the Arithmetic Operations only
- Provides Flags for Overflow, Underflow, Infinity (Positive Infinity, Negative Infinity), Quiet NaN (QNaN) and Signalling NaN (SNaN) for Floating-Point Numbers.
- Supports Fully pipelined implementation of Arithmetic Operations
- Provides Provision to configure the Core for Design Requirements
Функционален опис
- The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point computation. The term floating-point refers to the radix point of the number (decimal point or binary point), which is placed anywhere with respect to the significant digits of the number.
A floating-point number is typically expressed in the scientific notation, with a fraction (F), and an exponent (E) of a certain radix (r), in the form of F × r^E. Decimal numbers use radix of 10 (F × 10^E); while binary numbers use radix of 2 (F × 2^E). - The representation of the floating-point number is not unique. For example, the number 55.66 is represented as 5.566 × 10^1, 0.5566 × 10^2, 0.05566 × 10^3, and so on. The fractional part is normalized. In the normalized form, there is only a single non-zero digit before the radix point. For example, decimal number 123.4567 is normalized as 1.234567 × 10^2; binary number 1010.1011B is normalized as 1.0101011B × 2^3.
- It is important to note that floating-point numbers suffer from loss of precision when represented with a fixed number of bits (for example, 32-bit or 64-bit). This is because there are an infinite number of real numbers (even within a small range from 0.0 to 0.1). On the other hand, an
n- bit binary pattern represents a finite 2^n distinct numbers. Hence, not all the real numbers are represented. The nearest approximation is used instead, which results in the loss of accuracy.
The single precision floating-point number is represented as follows:
- Sign bit: 1-bit
- Exponent width: 8 bits
- Significand precision: 24 bits (23 bits are explicitly stored)
Figure 2-1. 32-bit Frame
The double precision floating-point number is represented as follows:
- Sign bit: 1-bit
- Exponent width: 11 bits
- Significand precision: 53 bits (52 bits are explicitly stored)
Figure 2-2. 64-bit Frame
The CoreFPU is the top-level integration of the two conversion modules (Fixed to Float point and Float to Fixed point) and three arithmetic operations (FP ADD, FP SUB, and FP MULT). The user can configure any one of the operations based on the requirement so that the resources are utilized for the selected operation.
The following figure shows the top level CoreFPU block diagram with ports.
Figure 2-3. CoreFPU Ports Block Diagram
The following table lists the width of the Input and Output ports. Table 2-1. Input and Output Port Width
| Сигнал | Single Precision Width | Double Precision Width |
| аин | [31:0] | [63:0] |
| канта | [31:0] | [63:0] |
| аут | [31:0] | [63:0] |
| pout | [31:0] | [63:0] |
Fixed-Point to Floating-Point (Conversion)
CoreFPU configured as fixed to floating-point infers the fixed-point to floating-point conversion module. The input (ain) to CoreFPU is any fixed-point number containing the integer and fractional bits. The CoreFPU configurator has the options to select the input integer and fraction widths. The input is valid on di_valid signal and output is valid on do_valid. The output (aout) of the fixed to float operation is in single or double precision floating-point format.
Example for fixed-point to floating-point conversion operation is listed in the following table.
Табела 2-2. Прample for Fixed-Point to Floating-Point Conversion
| Fixed-Point Number | Floating-Point Number | |||||
| аин | Цел број | Дропка | аут | Потпишете | Експонент | Мантиса |
| 0x12153524 (32-bit) | 00010010000101010 | 011010100100100 | 0x4610a9a9 | 0 | 10001100 | 00100001010100110101001 |
| 0x0000000000008CCC
(64-битни) |
0000000000000000000000000000000000000000000000001 | 000110011001100 | 0x3FF199999999999A | 0 | 01111111111 | 0001100110011001100110011001100110011001100110011010 |
Floating-Point to Fixed-Point (Conversion)
CoreFPU configured as floating to fixed-point infers the floating-point to fixed-point conversion module. The input (ain) to CoreFPU is any single or double precision floating-point number and produces an output (aout) in fixed-point format containing integer and fractional bits. The input is valid on di_valid signal and output is valid on do_valid. The CoreFPU configurator has the options to select the output integer and fraction widths.
Example for floating-point to fixed-point conversion operation is listed in the following table.
Табела 2-3. Прample for Floating-Point to Fixed-Point Conversion
| Floating-Point Number | Fixed-Point Number | |||||
| аин | Потпишете | Експонент | Мантиса | аут | Цел број | Дропка |
| 0x41bd6783 (32-bit) | 0 | 10000011 | 01111010110011110000011 | 0x000bd678 | 00000000000010111 | 101011001111000 |
| 0x4002094c447c30d3
(64-битни) |
0 | 10000000000 | 0010000010010100110001000100011111000011000011010011 | 0x0000000000012095 | 0000000000000000000000000000000000000000000000010 | 010000010010101 |
Floating-Point Addition (Arithmetic Operation)
CoreFPU configured as FP ADD infers the floating-point addition module. It adds the two floating-point numbers (ain and bin) and provides the output (pout) in floating-point format. The input and output are single or double precision floating-point numbers. The input is valid on di_valid signal and output is valid on do_valid. The core produce ovfl_fg (Overflow), qnan_fg (Quiet Not a Number), snan_fg (Signalling Not a Number), pinf_fg(Positive Infinity), and ninf_fg (Negative Infinity) flags based on the addition operation.
Examples for floating-point addition operation are listed in the following tables.
Табела 2-4. Прample for Floating-Point Addition Operation (32-bit)
| Floating-Point Value | Потпишете | Експонент | Мантиса |
| Floating-point input 1 ain (0x4e989680) | 0 | 10011101 | 00110001001011010000000 |
| Floating-point input 2 bin (0x4f191b40) | 0 | 10011110 | 00110010001101101000000 |
| Floating-point addition output pout (0x4f656680) | 0 | 10011110 | 11001010110011010000000 |
Табела 2-5. Прample for Floating-Point Addition Operation (64-bit)
| Floating-Point Value | Потпишете | Експонент | Мантиса |
| Floating-point input 1
ain (0x3ff4106ee30caa32) |
0 | 01111111111 | 0100000100000110111011100011000011001010101000110010 |
| Floating-point input 2
bin (0x40020b2a78798e61) |
0 | 10000000000 | 0010000010110010101001111000011110011000111001100001 |
| Floating-point addition output pout (0x400c1361e9ffe37a) | 0 | 10000000000 | 1100000100110110000111101001111111111110001101111010 |
Floating-Point Subtraction (Arithmetic Operation)
CoreFPU configured as FP SUB infers the floating-point subtraction module. It subtracts the two floating-point numbers (ain and bin) and provides the output (pout) in floating-point format. The input and output are single or double precision floating-point numbers. The input is valid on di_valid signal and output is valid on do_valid. The core produce ovfl_fg (Overflow), unfl_fg (underflow), qnan_fg (Quiet Not a Number), snan_fg (Signalling Not a Number), pinf_fg (Positive Infinity), and ninf_fg (Negative Infinity) flags based on the subtraction operation.
Examples for floating-point subtraction operation are listed in the following tables.
Табела 2-6. Прample for Floating-Point Subtraction Operation (32-bit)
| Floating-Point Value | Потпишете | Експонент | Мантиса |
| Floating-point input 1 ain (0xac85465f) | 1 | 01011001 | 00001010100011001011111 |
| Floating-point input 2 bin (0x2f516779) | 0 | 01011110 | 10100010110011101111001 |
| Floating-point subtraction output pout (0xaf5591ac) | 1 | 01011110 | 10101011001000110101011 |
| Floating-Point Value | Потпишете | Експонент | Мантиса |
| Floating-point input 1
ain (0x405569764adff823) |
0 | 10000000101 | 0101011010010111011001001010110111111111100000100011 |
| Floating-point input 2
bin (0x4057d04e78dee3fc) |
0 | 10000000101 | 0111110100000100111001111000110111101110001111111100 |
| Floating-point subtraction output pout (0xc02336c16ff75ec8) | 1 | 10000000010 | 0011001101101100000101101111111101110101111011001000 |
Floating-Point Multiplication (Arithmetic Operation)
CoreFPU configured as FP MULT infers the floating-point multiplication module. It multiplies the two floating-point numbers (ain and bin) and provides the output (pout) in floating-point format. The input and output are single or double precision floating-point numbers. The input is valid on di_valid signal and output is valid on do_valid. The core produce ovfl_fg (Overflow), unfl_fg (Underflow), qnan_fg (Quiet Not a Number), snan_fg (Signalling Not a Number), pinf_fg (Positive Infinity), and ninf_fg (Negative Infinity) flags based on the multiplication operation.
Examples for floating-point multiplication operation are listed in the following tables.
Табела 2-8. Прample for Floating-Point Multiplication Operation (32-bit)
| Floating-Point Value | Потпишете | Експонент | Мантиса |
| Floating-point input 1 ain (0x1ec7a735) | 0 | 00111101 | 10001111010011100110101 |
| Floating-point input 2 bin (0x6ecf15e8) | 0 | 11011101 | 10011110001010111101000 |
| Floating-point Multiplication output pout (0x4e21814a) | 0 | 10011100 | 01000011000000101001010 |
| Floating-Point Value | Потпишете | Експонент | Мантиса |
| Floating-point input 1
ain (0x40c1f5a9930be0df) |
0 | 10000001100 | 0001111101011010100110010011000010111110000011011111 |
| Floating-point input 2
bin (0x400a0866c962b501) |
0 | 10000000000 | 1010000010000110011011001001011000101011010100000001 |
| Floating-point multiplication output pout (0x40dd38a1c3e2cae9) | 0 | 10000001101 | 1101001110001010000111000011111000101100101011101001 |
Truth Table for Addition and Subtraction
The following truth tables list the values for addition and subtraction operation. Table 2-10. Truth Table for Addition
| Податоци А | Податоци Б | Бит за знак | Резултат | Прелевање | Подлив | SNaN | QNaN | PINF | NINF |
| QNaN/SNaN | x | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| x | QNaN/SNaN | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| нула | нула | 0 | POSZERO | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | posfinite(y) | 0 | posfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | negfinite(y) | 1 | negfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | posinfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| нула | neginfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| posfinite(y) | нула | 0 | posfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | posinfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| Табела 2-10. Truth Table for Addition (continued) | |||||||||
| Податоци А | Податоци Б | Бит за знак | Резултат | Прелевање | Подлив | SNaN | QNaN | PINF | NINF |
| posfinite | neginfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| negfinite(y) | нула | 1 | negfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | posinfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| negfinite | neginfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| posinfinite | нула | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | posfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | negfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | posinfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | neginfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| neginfinite | нула | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | posfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | negfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | posinfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| neginfinite | neginfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| posfinite | posfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | posfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posfinite | posfinite | 0/1 | QNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| posfinite | posfinite | 0/1 | SNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| posfinite | posfinite | 0 | POSSNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| posfinite | negfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | negfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | negfinite | 0 | POSSNaN | 0 | 1 | 1 | 0 | 0 | 0 |
| negfinite | posfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | posfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | posfinite | 0 | POSSNaN | 0 | 1 | 1 | 0 | 0 | 0 |
| negfinite | negfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | negfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| negfinite | negfinite | 0/1 | QNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| negfinite | negfinite | 0/1 | SNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| negfinite | negfinite | 0 | POSSNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| Податоци А | Податоци Б | Бит за знак | Резултат | Прелевање | Подлив | SNaN | QNaN | PINF | NINF |
| QNaN/SNaN | x | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| x | QNaN/SNaN | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| нула | нула | 0 | POSZERO | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | posfinite(y) | 1 | negfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | negfinite(y) | 0 | posfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | posinfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| нула | neginfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posfinite(y) | нула | 0 | posfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | posinfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| posfinite | neginfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| negfinite(y) | нула | 1 | negfinite(y) | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | posinfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| Табела 2-11. Truth Table for Subtraction (continued) | |||||||||
| Податоци А | Податоци Б | Бит за знак | Резултат | Прелевање | Подлив | SNaN | QNaN | PINF | NINF |
| negfinite | neginfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | нула | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | posfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | negfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | posinfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| posinfinite | neginfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| neginfinite | нула | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | posfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | negfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | posinfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | neginfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| posfinite | posfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | posfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | posfinite | 0 | POSSNaN | 0 | 1 | 1 | 0 | 0 | 0 |
| posfinite | negfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | negfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posfinite | negfinite | 0/1 | QNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| posfinite | negfinite | 0/1 | SNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| posfinite | negfinite | 0 | POSSNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| negfinite | posfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | posfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| negfinite | posfinite | 0/1 | QNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| negfinite | posfinite | 0/1 | SNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| negfinite | posfinite | 0 | POSSNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| negfinite | negfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | negfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | negfinite | 0 | POSSNaN | 0 | 1 | 1 | 0 | 0 | 0 |
Важно:
- They in the preceding tables denotes any number.
- The in the preceding tables denotes a don’t care condition.
Truth Table for Multiplication
The following truth table lists the values for multiplication operation.
Table 2-12. Truth Table for Multiplication
| Податоци А | Податоци Б | Бит за знак | Резултат | Прелевање | Подлив | SNaN | QNaN | PINF | NINF |
| QNaN/SNaN | x | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| x | QNaN/SNaN | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| нула | нула | 0 | POSZERO | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | posfinite | 0 | POSZERO | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | negfinite | 0 | POSZERO | 0 | 0 | 0 | 0 | 0 | 0 |
| нула | posinfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| нула | neginfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| Табела 2-12. Truth Table for Multiplication (continued) | |||||||||
| Податоци А | Податоци Б | Бит за знак | Резултат | Прелевање | Подлив | SNaN | QNaN | PINF | NINF |
| posfinite | нула | 0 | POSZERO | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | posinfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posfinite | neginfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| negfinite | нула | 0 | POSZERO | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | posinfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| negfinite | neginfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | нула | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| posinfinite | posfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | negfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| posinfinite | posinfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posinfinite | neginfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | нула | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| neginfinite | posfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | negfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| neginfinite | posinfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| neginfinite | neginfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posfinite | posfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | posfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| posfinite | posfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| posfinite | posfinite | 0 | POSSNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| posfinite | posfinite | 0 | POSSNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| posfinite | posfinite | 0 | POSSNaN | 0 | 1 | 1 | 0 | 0 | 0 |
| posfinite | negfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| posfinite | negfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| posfinite | negfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| posfinite | negfinite | 0 | POSSNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| posfinite | negfinite | 0 | POSSNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| posfinite | negfinite | 0 | POSSNaN | 0 | 1 | 1 | 0 | 0 | 0 |
| negfinite | posfinite | 1 | negfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | posfinite | 1 | neginfinite | 0 | 0 | 0 | 0 | 0 | 1 |
| negfinite | posfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| negfinite | posfinite | 0 | POSSNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| negfinite | posfinite | 0 | POSSNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| negfinite | posfinite | 0 | POSSNaN | 0 | 1 | 1 | 0 | 0 | 0 |
| negfinite | negfinite | 0 | posfinite | 0 | 0 | 0 | 0 | 0 | 0 |
| negfinite | negfinite | 0 | posinfinite | 0 | 0 | 0 | 0 | 1 | 0 |
| negfinite | negfinite | 0 | POSQNaN | 0 | 0 | 0 | 1 | 0 | 0 |
| negfinite | negfinite | 0 | POSQNaN | 0 | 0 | 1 | 0 | 0 | 0 |
| negfinite | negfinite | 0 | POSQNaN | 1 | 0 | 1 | 0 | 0 | 0 |
| negfinite | negfinite | 0 | POSQNaN | 0 | 1 | 1 | 0 | 0 | 0 |
Важно:
Sign Bit ‘0’ defines positive output and ‘1’ defines negative output.
The x in the preceding table denotes don’t care condition.
CoreFPU Parameters and Interface Signals
This section discusses the parameters in the CoreFPU Configurator settings and I/O signals.
Параметри на GUI за конфигурација
There are number of configurable options that apply to the FPU unit as shown in the following table. If a configuration other than default is required, configuration dialog box is used to select appropriate values for the configurable option.
Table 3-1. CoreFPU Configuration GUI Parameters
| Име на параметар | Стандардно | Опис |
| Прецизност | Слободна | Select the operation as required:
Single Precision |
| Тип на конверзија | Fixed-point to Floating-point conversion | Select the operation as required:
|
| Input Fraction Width1 | 15 | Configures the fractional point in the Input ain and bin signals
Valid range is 31–1 |
| Output Fraction Width2 | 15 | Configures the fractional point in the Output aout signals
Valid range is 51–1 |
Важно:
- This parameter is configurable only during fixed-point to floating-point conversion.
- This parameter is configurable only during floating-point to fixed-point conversion.
Влезни и излезни сигнали (Поставете прашање)
The following table lists the input and output port signals of CoreFPU.
Table 3-2. Port Description
| Име на сигналот | Ширина | Тип | Опис |
| clk | 1 | Влез | Main system clock |
| rstn | 1 | Влез | Active-low asynchronous reset |
| di_valid | 1 | Влез | Active-high input valid
This signal indicates that the data present on ain[31:0], ain[63:0] and bin[31:0], bin[63:0] is valid. |
| аин | 32/64 | Влез | A Input Bus (It is used for all operations) |
| канта1 | 32/64 | Влез | B Input Bus (It is used for arithmetic operations only) |
| аут2 | 32/64 | Излез | Output value when fixed to floating-point or floating to fixed-point conversion operations are selected. |
| pout1 | 32/64 | Излез | Output value when addition, subtraction, or multiplication operations are selected. |
| Табела 3-2. Port Description (continued) | |||
| Име на сигналот | Ширина | Тип | Опис |
| do_valid | 1 | Излез | Active-high signal
This signal indicates that the data present on pout/aout data bus is valid. |
| ovfl_fg3 | 1 | Излез | Active-high signal
This signal indicates the overflow during floating-point operations. |
| unfl_fg | 1 | Излез | Active-high signal
This Signal indicates the underflow during floating point operations. |
| qnan_fg3 | 1 | Излез | Active-high signal
This signal indicates the Quiet Not a Number (QNaN) during floating-point operations. |
| snan_fg | 1 | Излез | Active-high signal
This signal indicates the Signalling Not-a-Number (SNaN) during floating point operations. |
| pinf_fg3 | 1 | Излез | Active-high signal
This signal indicates the positive infinity during floating-point operations. |
| ninf_fg | 1 | Излез | Active-high signal
This signal indicates the negative infinity during floating-point operations. |
Важно:
- This port is available only for floating-point addition, subtraction, or multiplication operations.
- This port is available only for fixed-point to floating-point and floating-point to fixed-point conversion operations.
- This port is available for floating-point to fixed-point, floating-point addition, floating-point subtraction, and floating-point multiplication.
Implementation of CoreFPU in Libero Design Suite
This section describes the implementation of CoreFPU in the Libero Design Suite.
SmartDesign
CoreFPU is available for download in the Libero IP catalog through the web repository. Once it is listed in the catalog, the core is instantiated using the SmartDesign flow. For information on using SmartDesign to configure, connect, and generate cores, see Libero SoC online help.
After configuring and generating the core instance, the basic functionality is simulated using the testbench supplied with the CoreFPU. The testbench parameters automatically adjust to the CoreFPU configuration. The CoreFPU is instantiated as a component of a larger design.
Figure 4-1. SmartDesign CoreFPU Instance for Arithmetic Operations
Figure 4-2. SmartDesign CoreFPU Instance for Conversion Operation 
Fixed-Point to Floating-Point Conversion
During fixed-point to floating-point conversion, the Input Fraction Width is configurable. The Output Width is set to 32-bit for single precision and 64-bit for double precision floating-point by default.
To convert from fixed-point to floating-point, select Fixed to floating point Conversion type, as shown in the following figure.
Floating-Point to Fixed-Point
During floating-point to fixed-point conversion, the Output Fractional Width is configurable, and the Input Width is set to 32-bit for single precision and 64-bit for double precision floating-point by default.
To convert from floating-point to fixed-point, select Floating point to fixed Conversion type, as shown in the following figure.
Figure 4-4. CoreFPU Configurator for Floating Point to Fixed
Floating-Point Addition/Subtraction/Multiplication
During floating-point addition, subtraction, and multiplication operation, the Input Fraction Width and Output Fraction Width are not configurable as these are floating-point arithmetic operations, and the Input/Output Width is set to 32-bit single precision and 64-bit for double precision floating-point by default.
The following figure shows the CoreFPU configurator for floating point subtraction operation.
Figure 4-5. CoreFPU Configurator for Floating Point Subtraction
Симулација (Поставете прашање)
To run simulations, in the core configuration window, select User Testbench. After generating the CoreFPU, the pre-synthesis testbench Hardware Description Language (HDL) files се инсталирани во Libero.
Simulation Waveforms (Ask a Question)
This section discusses the simulation waveforms for CoreFPU.
The following figures show the waveform of fixed-point to floating-point conversion for both 32-bit and 64-bit.

Системска интеграција
Следната слика покажува поранешенample of using the core. In this example, the design UART is used as a communication channel between the design and the host PC. The signals ain and bin (each of 32-bit or 64-bit width) are the inputs to the design from UART. After the CoreFPU receives the di_valid signal, it computes the result. After computing the result, the do_valid signal goes high and stores the result (aout/pout data) in the output buffer. This same procedure is applicable for conversion and arithmetic operations. For conversion operations, only input ain is sufficient whereas for arithmetic operations, both ain and bin inputs are required. Output aout is enabled for conversion operations and pout port is enabled for arithmetic operations.
Слика 4-16. Прample of the CoreFPU System

- Synthesis (Ask a Question)
To run synthesis on the CoreFPU, set the design root to the IP component instance and from the Libero design flow pane, run the Synthesis tool.
Place and Route (Ask a Question)
After the design is synthesized, run the Place-and-Route tool. CoreFPU requires no special placeand- route settings. - User Testbench (Постави прашање)
A user testbench is provided with the CoreFPU IP release. Using this testbench, you can verify functional behavior of CoreFPU.
A simplified block diagram of the user testbench is shown in the following figure. The user testbench instantiates the Configured CoreFPU design (UUT), and includes behavioral test data generator, necessary clock, and reset signals.
Figure 4-17. CoreFPU User Testbench
Important: You have to monitor the output signals in ModelSim simulator, see Simulation section.
Additional References (Ask a Question)
This section provides a list for additional information.
За ажурирања и дополнителни информации за софтверот, уредите и хардверот, посетете ја
Страници за интелектуална сопственост на FPGA и PLD со микрочип webсајт.
- Known Issues and Workarounds (Ask a Question)
There are no known issues and workarounds for CoreFPU v3.0. - Discontinued Features and Devices (Ask a Question)
Нема прекинати функции и уреди со ова IP издание.
Речник
The following are the list of terms and definitions used in the document.
Табела 6-1. Термини и дефиниции
| Термин | Дефиниција |
| FPU | Единица со подвижна точка |
| FP ADD | Floating-Point Addition |
| FP SUB | Floating-Point Subtraction |
| FP MULT | Floating-Point Multiplication |
Решени прашања
The following table lists all the resolved issues for the various CoreFPU releases.
Табела 7-1. Решени прашања
| Ослободете | Опис |
| 3.0 | The following is the list of all resolved issues in the v3.0 release:
Case Number: 01420387 and 01422128 Added the rounding scheme logic (round to the nearest even number). |
| 2.1 | The following is the list of all resolved issues in the v2.1 release: The design encounters issues due to the presence of duplicate modules when multiple cores are instantiated. Renaming the CoreFPU IP instance results in an “Undefined module” error. |
| 1.0 | Почетно објавување |
Device Resource Utilization and Performance
The CoreFPU macro is implemented in the families listed in the following table.
Table 8-1. FPU PolarFire Unit Device Utilization for 32-Bit
| FPGA Resources | Искористување | |||||||
| Семејство | 4 ЛУТ | DFF | Вкупно | Math Block | Уред | Персенtage | Изведба | Латентност |
| Fixed-Point to Floating-Point | ||||||||
| PolarFire® | 260 | 104 | 364 | 0 | MPF300T | 0.12 | 310 MHz | 3 |
| Floating-Point to Fixed-Point | ||||||||
| PolarFire | 591 | 102 | 693 | 0 | MPF300T | 0.23 | 160 MHz | 3 |
| Floating-Point Addition | ||||||||
| PolarFire | 1575 | 1551 | 3126 | 0 | MPF300T | 1.06 | 340 MHz | 16 |
| Floating-Point Subtraction | ||||||||
| PolarFire | 1561 | 1549 | 3110 | 0 | MPF300T | 1.04 | 345 MHz | 16 |
| Floating-Point Multiplication | ||||||||
| PolarFire | 465 | 847 | 1312 | 4 | MPF300T | 0.44 | 385 MHz | 14 |
| FPGA Resources | Искористување | |||||||
| Семејство | 4 ЛУТ | DFF | Вкупно | Math Block | Уред | Персенtage | Изведба | Латентност |
| Fixed-Point to Floating-Point | ||||||||
| RTG4™ | 264 | 104 | 368 | 0 | RT4G150 | 0.24 | 160 MHz | 3 |
| Floating-Point to Fixed-Point | ||||||||
| RTG4 | 439 | 112 | 551 | 0 | RT4G150 | 0.36 | 105 MHz | 3 |
| Floating-Point Addition | ||||||||
| RTG4 | 1733 | 1551 | 3284 | 0 | RT4G150 | 1.16 | 195 MHz | 16 |
| Floating-Point Subtraction | ||||||||
| RTG4 | 1729 | 1549 | 3258 | 0 | RT4G150 | 1.16 | 190 MHz | 16 |
| Floating-Point Multiplication | ||||||||
| RTG4 | 468 | 847 | 1315 | 4 | RT4G150 | 0.87 | 175 MHz | 14 |
| FPGA Resources | Искористување | |||||||
| Семејство | 4 ЛУТ | DFF | Вкупно | Math Block | Уред | Персенtage | Изведба | Латентност |
| Fixed-Point to Floating-Point | ||||||||
| PolarFire® | 638 | 201 | 849 | 0 | MPF300T | 0.28 | 305 MHz | 3 |
| Floating-Point to Fixed-Point | ||||||||
| PolarFire | 2442 | 203 | 2645 | 0 | MPF300T | 0.89 | 110 MHz | 3 |
| Floating-Point Addition | ||||||||
| PolarFire | 5144 | 4028 | 9172 | 0 | MPF300T | 3.06 | 240 MHz | 16 |
| Floating-Point Subtraction | ||||||||
| PolarFire | 5153 | 4026 | 9179 | 0 | MPF300T | 3.06 | 250 MHz | 16 |
| Floating-Point Multiplication | ||||||||
| PolarFire | 1161 | 3818 | 4979 | 16 | MPF300T | 1.66 | 340 MHz | 27 |
| FPGA Resources | Искористување | |||||||
| Семејство | 4 ЛУТ | DFF | Вкупно | Math Block | Уред | Персенtage | Изведба | Латентност |
| Fixed-Point to Floating-Point | ||||||||
| RTG4™ | 621 | 201 | 822 | 0 | RT4G150 | 0.54 | 140 MHz | 3 |
| Floating-Point to Fixed-Point | ||||||||
| RTG4 | 1114 | 203 | 1215 | 0 | RT4G150 | 0.86 | 75 MHz | 3 |
| Floating-Point Addition | ||||||||
| RTG4 | 4941 | 4028 | 8969 | 0 | RT4G150 | 5.9 | 140 MHz | 16 |
| Floating-Point Subtraction | ||||||||
| RTG4 | 5190 | 4026 | 9216 | 0 | RT4G150 | 6.07 | 130 MHz | 16 |
| Floating-Point Multiplication | ||||||||
| RTG4 | 1165 | 3818 | 4983 | 16 | RT4G150 | 3.28 | 170 MHz | 27 |
Important: To increase the frequency, select Enable retiming option in synthesis setting.
Историја на ревизии
Историјата на ревизии ги опишува промените што беа имплементирани во документот. Промените се наведени со ревизија, почнувајќи од најактуелната публикација.

Поддршка за FPGA за микрочип
Групата производи на Microchip FPGA ги поддржува своите производи со различни услуги за поддршка, вклучувајќи ги и услугите за клиенти, Центарот за техничка поддршка на клиентите, а webсајт и канцеларии за продажба низ целиот свет. На клиентите им се предлага да ги посетат онлајн ресурсите на Microchip пред да стапат во контакт со поддршката бидејќи е многу веројатно дека нивните прашања се веќе одговорени.
Контактирајте го Центарот за техничка поддршка преку webсајт на www.microchip.com/support. Спомнете го бројот на дел од уредот FPGA, изберете соодветна категорија на случај и прикачете дизајн fileпри креирање на случај за техничка поддршка.
Контактирајте со службата за корисници за нетехничка поддршка на производот, како што се цените на производите, надградбите на производите, информациите за ажурирање, статусот на нарачката и овластувањето.
- Од Северна Америка, јавете се на 800.262.1060
- Од остатокот од светот, јавете се на 650.318.4460
- Факс, од каде било во светот, 650.318.8044
Информации за микрочип
Заштитни знаци
Името и логото „Микрочип“, логото „М“ и другите имиња, логоа и брендови се регистрирани и нерегистрирани заштитни знаци на Microchip Technology Incorporated или нејзините филијали и/или подружници во Соединетите Американски Држави и/или други земји („Микрочип Заштитни знаци“). Информации во врска со заштитните марки на микрочипот може да се најдат на https://www.microchip.com/en-us/about/legal-information/microchip-trademarks
ISBN: 979-8-3371-0947-3
Правно известување
Оваа публикација и информациите овде може да се користат само со производите на Микрочип, вклучително и за дизајнирање, тестирање и интегрирање на производите на Микрочип со вашата апликација. Користењето на овие информации на кој било друг начин ги прекршува овие услови. Информациите за апликациите на уредот се обезбедени само за ваша погодност и може да бидат заменети со ажурирања. Ваша одговорност е да се осигурате дека вашата апликација ги исполнува вашите спецификации. Контактирајте ја локалната канцеларија за продажба на Microchip за дополнителна поддршка или добијте дополнителна поддршка на www.microchip.com/en-us/support/design-help/client-support-services
ОВАА ИНФОРМАЦИЈА СЕ ОБЕЗБЕДУВА МИКРОЧИП „КАКО ШТО Е“. МИКРОЧИП НЕ ДАВА НИКАКВИ ПРЕТСТАВУВАЊА ИЛИ ГАРАНЦИИ БИЛО ИЗРАЗНИ ИЛИ ИМПЛИЦИРАНИ, ПИСМЕНИ ИЛИ УСНИ, ЗАКОНСКИ ИЛИ ПОинаку, ПОВРЗАНИ СО ИНФОРМАЦИИТЕ ВКЛУЧУВАЈТЕ НО НЕ ОГРАНИЧЕНИ НА ОГРАНИЧЕНО НЕПРЕКРШУВАЊЕ, ПРОДАЖБА И СООДВЕТНОСТ ЗА ПОСЕДНА ЦЕЛ ИЛИ ГАРАНЦИИ ПОВРЗАНИ СО НЕГОВАТА СОСТОЈБА, КВАЛИТЕТ ИЛИ ИЗВЕДБА.
ВО НИКОЈ СЛУЧАЈ МИКРОЧИПОТ НЕМА ДА СЕ ОДГОВАРА ЗА НИКАКВА ИНДИРЕКТНА, ПОСЕБНА, КАЗНЕТНА, ИНЦИДЕНТАЛНА ИЛИ СОСЕДНИЧКА ЗАГУБА, ШТЕТА, ТРОШОЦА ИЛИ ТРОШОВИ ОД БИЛО БИЛО ПОВРЗАН СО НАС, НИЕ ЗА НИЕ, ДУРИ И ДА Е СОВЕТЕН МИКРОЧИП ЗА МОЖНОСТА ИЛИ ШТЕТИТЕ СЕ ПРЕДВИДЕЛИ. ВО ЦЕЛОСНИОТ СТЕМЕН ДОЗВОЛЕН СО ЗАКОН, ВКУПНАТА ОДГОВОРНОСТ НА МИКРОЧИПОТ ЗА СИТЕ ПОБАРУВАЊА НА КАКОВ НАЧИН ПОВРЗАНИ СО ИНФОРМАЦИИТЕ ИЛИ НЕГОВАТА УПОТРЕБА НЕМА ДА ЈА НАДМИНАТ ВИСИНАТА НА НАДОМЕСТОЦИ, АКО ГИ ПОСТОЈАТ ТОА ШТО ГИ ПЛАТУВААТ ИНФОРМАЦИИ.
Употребата на уредите со микрочип во апликациите за одржување во живот и/или за безбедност е целосно на ризик на купувачот, а купувачот се согласува да го брани, обештети и чува безопасниот Микрочип од сите штети, барања, тужби или трошоци кои произлегуваат од таквата употреба. Ниту една лиценца не се пренесува, имплицитно или на друг начин, според правата на интелектуална сопственост на Микрочип, освен ако не е поинаку наведено.
Функција за заштита на код на уреди со микрочип
Забележете ги следните детали за функцијата за заштита на кодот на производите на Microchip:
- Производите со микрочип ги исполнуваат спецификациите содржани во нивниот посебен лист со податоци за микрочипови.
- Микрочип верува дека неговата фамилија на производи е безбедна кога се користи на предвидениот начин, во рамките на работните спецификации и под нормални услови.
- Микрочипот ги вреднува и агресивно ги штити своите права на интелектуална сопственост. Обидите да се прекршат карактеристиките за заштита на кодот на производите на Микрочип се строго забранети и може да го прекршат Законот за авторски права на дигиталниот милениум.
- Ниту Microchip ниту кој било друг производител на полупроводници не може да ја гарантира безбедноста на неговиот код. Заштитата на кодот не значи дека гарантираме дека производот е „нескршлив“. Заштитата на кодот постојано се развива. Микрочип е посветен на континуирано подобрување на карактеристиките за заштита на кодот на нашите производи.
Документи / ресурси
![]() |
MICROCHIP CoreFPU Core Floating Point Unit [pdf] Упатство за корисникот v3.0, v2.1, v2.0, v1.0, CoreFPU Core Floating Point Unit, Core Floating Point Unit, Floating Point Unit, Point Unit |

